
Adapting MSP to Microsoft C++

©James T. Smith, 1999

1. Introduction
a. General comments

i. Purpose
(1) MSP was developed in a PC environment with the original version of

Borland C++, then adapted in several stages to Version 5.0, the standard
for this book. Many readers, however, prefer to or must use a different
compiler. The environment most frequently mentioned that is somewhat
close to the book’s is Microsoft’s. This file describes my adaptation of MSP
as a suite of Microsoft Visual C++ Win32 Console Applications.

(2) It’s an adaptation guide, not a completed product. Most MSP features
described in this book work under the adaptation, but it has not been used
for further development. With it, you can see how these features work in
your Microsoft environment. To use it for a major project, however, you’ll
probably want to select only the appropriate MSP modules. You’ll need to
test the adaptation much more thoroughly, and probably add minor cor-
rections as needed by your specific application.

ii. Major differences
(1) Microsoft’s complex mathematics module is implemented with templates.

That adds more levels of implicit conversions for the compiler to consider
when resolving overloaded function declarations. Many more ambiguities
would result, and some methods MSP uses to resolve them would no longer
work. This would cause so many changes that you’d lose sight of the rest.
So the adaptation contains a completely rewritten complex module.

(2) Microsoft handles hardware faults, such as overflow detected by the
floating-point processor, by throwing“structured exceptions”. It provides
no way to intervene in this process, and forbids simultaneous use of struc-
tured exceptions and the C++ standard exceptions that MSP uses. Convert-
ing all MSP exception handling would cause too many changes, and would
be a step backward in programming style. Therefore the adapation does
not handle hardware exceptions.

iii. Minor differences
(1) Differences in the stages of C++ evolution on which the compilers are based

cause minor syntax adaptations, some of which occur frequently.
(2) Microsoft’s rules for generating object code for needed instances of template

functions differ from Borland’s. The source code codas must be expanded
to force generation.

(3) Microsoft’s DOS execution windows differ slightly from Borland’s, and
require some adjustment of output.

(4) There are various minor differences beyond these.

Adapting MSP to Microsoft C++ @James T. Smith, 1999

Page 2

iv. Adaptation status
(1) The adaptation was designed to implement as many of this book’s MSP

features as possible. It goes no farther than the demonstration and test
programs included on the CD-ROM packaged with the book. It needs more
testing to reveal bugs these client programs won’t detect.

(2) Each MSP module’s source code file has a coda consisting of otherwise
useless functions that invoke MSP functions as required, ensuring that
appropriate MSP function instances are generated in the object code.
Microsoft’s requirements differ from Borland’s: codas in the adaptation are
more extensive than in the Borland version. I couldn’t find Microsoft’s
rules, so the adapted codas invoke only instances required by the CD-
ROM’s demonstration and test programs. Your own programs will almost
certainly invoke further instances, and linker errors will result. Find the
appropriate MSP source code files, and add to their codas the required
invocations.

(3) Hardware exceptions—particularly those detected by the floating-point
processor—are not handled by the adaptation. Microsoft’s method for
providing this capability is incompatible with this book’s exception han-
dling mechanism. It was judged more important to keep the rest of the
book’s features than to change all of them to Microsoft’s less graceful
mechanism.

(4) The Microsoft Win32 non-console Application environment (like Borland’s
C++ Builder) is incompatible with this adaptation. Its exception handling
mechanism is still farther from the book’s. Moreover, it uses Standard C++
headers, which include many subtle differences I haven’t yet researched.

v. Overall assessment This adaptation was painful. The Microsoft user
interface is continually annoying, much less convenient than Borland’s.
Documentation is less adequate. The lack of a graceful way to intervene
in hardware exception handling is especially serious. Microsoft’s policies
for generating object code for function instances, and for resolving ambigu-
ous function invocations, are inadequate and insufficiently documented.
These problems are interrelated: you often can’t tell whether you violated
a C++ language rule, Microsoft didn’t implement it properly, you didn’t
include the correct invocation in a coda, Microsoft didn’t generate code
when it should have, or . . . And the user interface doesn’t help answer
these questions. This book would probably not have been written at all had
I been trying to use Microsoft C++ at the onset.

b. MicrosoftAdaptation folder organization
i. This AdaptingToMicrosoft file first outlines the purpose of the adaptation,

its major features, and its current status. The file then describes in detail
all the changes made to the Borland C++ Version 5.0 code.

ii. The adaptation itself is contained in several subfolders organized exactly
like the folders in the root directory of this diskette.

Adapting MSP to Microsoft C++ @James T. Smith, 1999

Page 3

iii. One file, however, cannot be included. The adaptation requires replacing
Microsoft’s Complex.H header file and source code. I simply used
Borland’s, stripped of features peculiar to that environment, and only
slightly modified beyond that. Later in this file you’ll find instructions for
that phase of the adaptation process. It was in fact the easiest part for me
to carry out. But distributing the adapted file would violate copyright
restrictions and ethics. Borland’s design is elegant and effective. If you
must use Microsoft’s environment, buy Borland’s product and adapt this
feature as I did. If you encounter severe difficulty, email me at
smith@math.sfsu.edu.

c. AdaptingToMicrosoft file
The next heading in this file describes a few systematic changes involved in
converting from the Borland to the Microsoft evironment. Subsequent headings
are included for each MSP module. Under each heading you’ll find the list of
source code changes for that module and for the related demonstration and test
programs, except for the few systematic changes already detailed.

2. Systematic changes (These won’t be mentioned again.)
a. Set the tab size and indentation to 2 instead of Microsoft’s default 4.
b. Change numerous occurrences of the unprintable characters and ± to ^22

and +or-, and maintain vertical output alignment.
c. Remove #pragma warn lines. They have no effect.
d. Remove outer parentheses from all instances of throw(Exception()); This

seems to be a Microsoft compiler bug; it severely affects compiling efficiency.
e. Append newlines and Pause() after the last outputs of many test and demon-

stration programs, so that Microsoft’s exit message doesn’t interfere with pro-
gram output, and the console window stays open for you to see program output.

f. Remove #include <Excpt.H> statements.

3. General module
a. Fig2_03 No further changes.
b. Fig2_04 No further changes.
c. Fig3_06

i. This program doesn't demonstrate what was intended. It outputs 32769
32769 because the compiler uses 32-bit integers. To demonstrate what was
intended, put 2 + 1 in place of 32769 = 2 + 1.31 15

d. General.H and General.CPP
i. The book includes function min(int,int) in this module. Add the analo-

gous function max(int,int). Probably, the analogous double functions
are required, too, but during adaptation, the macro versions mentioned
condescendingly in the text were substituted for invocations of the double
versions instead.

Adapting MSP to Microsoft C++ @James T. Smith, 1999

Page 4

ii. Add void randomize() to General.H and define this in General.CPP as
srand((unsigned)time(NULL)); following a Microsoft example. Add
#include <Time.H> to General.CPP.

e. GenTest
i. <Alt-F4> doesn’t break out of the test loop and halt. You have to kill the

program with the exit button. Change the cue.

4. Scalar module
a. Scalar.H and Scalar.CPP

i. Change exception to _exception in _matherr. Add #include <Math.H>
for the definition of _exception.

ii. Append return 1 at end of _matherr.
iii. In ForShow change

try { S = new char[80]; }
catch(xalloc) {

to
S = new char[80];
if (S == NULL) {.

Remove #include <Except.H>: it’s no longer needed.
iv. Microsoft evidently doesn’t permit defaulted arguments in template func-

tions. Remove the defaults from the second arguments of Show and
ForShow, and add versions of these functions with just the first argument
to both Scalar.H and Scalar.CPP. Adjust the coda of the latter accord-
ingly.

v. As reported later, complex number features are changed. In Scalar.H
change <Complex.H> to “MSPComplex.H” and remove #define ii. The
latter will go in the new MSPComplex.H.

vi. As reported later, all references to floating point exception handling are
removed from Scalar.CPP.

b. ScaTest
i. Change <Complex.H> to “MSPComplex.H”.
ii. Omit “String.H”. It’s not necessary.

c. Fig3_10 Change <Complex.H> to “MSPComplex.H”.
d. Fig3_11

i. Change pow10(n) to pow(10,n) because the former is not defined in
Microsoft’s Math.h.

e. Fig3_12
i. Change exception to _exception.
ii. Microsoft’s run-time error handler doesn’t display any error message. The

invalid sqrt(-1) invocation merely returns -1.#IND. But if you output
Hello in the substituted _matherr you’ll see that it’s in fact executed.

f. Fig3_14

Adapting MSP to Microsoft C++ @James T. Smith, 1999

Page 5

i. To actually run this, replace the two #include lines by #include
"Scalar.H".

ii. Microsoft C++ evidently doesn’t detect TLOSS situations.
g. Fig3_15

i. Change “Scalar.H” to “General.H”.
ii. Change cos to Cos except in the return statement.
iii. Because Microsoft C++ doesn’t detect TLOSS situations, change (1e70,1)

to (1,1e70). Then you get an OVERFLOW error in sinh.
h. Fig3_16

i. The interplay between _control87 and _fpreset is not clear, and neither
are the Microsoft masking defaults. It’s only safe to assume that any
floating point error must be caught somehow if the program is to continue,
because the error handler must execute _fpreset. I rewrote the program.
It outputs 0, 0, 1.#INF, 1.#INF, -1.#IND, and crashes on the last trial.

i. Fig3_19
i. Omit #include <Signal.H>.
ii. With no MSP hardware exception handling in Scalar.CPP,

(1) a = 0 outputs 1.#INF.
(2) a = 1e-200 does the same.
(3) a = 1e200 outputs 0.

iii. MSP hardware exception handling cannot be implemented in Microsoft C++
without considerable redesign.

iv. The Microsoft run-time environment employs the obsolete structured
exception technique. That uses __try and __except blocks with __except
arguments in place of try and catch blocks. An unmasked hardware
exception in a __try block transfers control to function _fpieee_flt,
executed as the first __except argument. That function, declared in
header <FPIEEE.H>, knows how to get information about the exception and
transmit it to the handler function, whose address is in the second
__except argument. This handler function then executes and does what-
ever you want done to all exceptions. Then control passes to the __except
block, which has access to variables in the arguments of _fpieee_flt,
hence to information about the exception. At this point the stack is as
though it had successfully executed the erroneous operation and got a
return value (specified by the handler function), but had not executed the
__try block after the error.

v. There seems to be no alternative to this technique, so structured exceptions
are required for handling hardware exceptions. But Microsoft C++ forbids
mixing exception handling techniques. Therefore the entire MSP exception
handling apparatus would have to be redesigned to use structured
exceptions.

vi. This would require

Adapting MSP to Microsoft C++ @James T. Smith, 1999

Page 6

(1) a new catalog of structured exception types, consistent with Microsoft,
(2) minor revision of the MSP _matherr function to raise structured exceptions

appropriately,
(3) elimination of the MSP FPEHandler function and associated material,
(4) replacement of all try keywords by __try,
(5) design of a standard __except statement (necessarily rather complicated)

which then will replace all catch statements,
(6) replacement of all throw statements by corresponding RaiseException

statements.
vii. This appears to be a step backward in programming practice. The excep-

tion handling technique of Borland C++ Version 5 may not survive much
longer, but probably won’t be replaced by something more primitive, such
as structured exceptions. Therefore, MSP hardware exception handling
techniques will not be implemented in Microsoft C++. The adaptation will
handle exceptions detected by the Math.H library functions, but not those
detected only by the numeric processor.

viii. Remove the code for FPExceptionName, FPEHandler, MSPErrorHandling, and
remove #pragma startup MSPErrorHandling.

j. Fig3_25
i. This program’s output differs in format and roundoff from the Borland

version.
k. ErrTest

i. The first test is irrelevant and crashes. Remove that and #include
<Signal.H>.

ii. Otherwise, it’s OK, and pow does report the arguments correctly.
l. Riemann No further changes.

5. Complex module
a. Microsoft implemented the complex type with templates. The concomitant type

conversions caused severe ambiguity problems with MSP. I decided to replace
their complex mathematics module and associated object code with my own. I
stripped the Borland C++ Version 5 Complex.H header file of features not
pertinent to C++ toolkit, cleaned up the code, and compiled it for use here. The
resulting module consists of MSPComplex.H and MSPComplex.CPP. In the MSP
organization, it should be prior to General, parallel to C++ double and int
features.

b. Move #define ii complex(0,1) from Scalar.H to MSPComplex.H.
c. Copy #define M_PI and #define M_LOG10E from Borland’s Math.H to

MSPComplex.H. Microsoft evidently doesn’t provide these constants.
d. The default constructor compiled but wouldn’t link. Moreover, the compiler

didn’t supply one. The constructor with real and imaginary arguments, both
defaulted to zero, suffices.

Adapting MSP to Microsoft C++ @James T. Smith, 1999

Page 7

e. Some + and - operators compiled but didn’t link. Evidently Microsoft doesn’t
compile object code unless it’s used. So MSPComplex.CPP has a brief coda using
some of its functions.

6. ElemFunc module
a. ElemFunc.H and ElemFunc.CPP

i. Change Values.H to Limits.H and MAXLONG to LONG_MAX.
b. ElemTest No further change.

7. Equate1 module
a. Equate1.H and Equate1.CPP

i. In both files, replace the template NR by its double and complex
instances.

b. Equ1Test
i. Split templates FdFforCam, Bouncer, and NRTest into double and

complex instances, because Microsoft can’t settle some ambiguity of the
template parameters.

8. Vector module
a. VectorL.H and VectorL.CPP

i. Replace the unprintable empty vector symbol N in ForShow by the string
“EMPTY”.

ii. Replace the three overloaded = declarations in Vector.H by one, that does
not permit any type conversion. Modify the code in VectorL.CPP
accordingly. Microsoft doesn’t recognize the variants, and would incorrectly
substitute the default assignment operator.

iii. Supply a new nonmember overloaded function void
Assign(Vector<Scalar>&,const Vector<double>&), which acts like the
converting assignment operator function.

iv. In SetUp change from the xalloc method of handling a new exception.
Use the fact that new returns NULL in case of exception. Eliminate the
outer try block.

v. In the catchall block in SetUp change High and Low to Hi and Lo. This
is a bug in original MSP code.

vi. In KeyIn and MakeUnit add return This at end. (They’re never
executed.)

vii. The console screen is 80 characters wide, but you get an automatic newline
if there’s anything in column 80. Change T.screenwidth in Show to
ScreenWidth, and remove its calculation.

viii. Microsoft wouldn’t generate some instances of Vector template functions
until I added a list of them to UseVectorL.

b. VecTestL

Adapting MSP to Microsoft C++ @James T. Smith, 1999

Page 8

i. Microsoft wouldn’t generate some instances of Vector template functions
until I added kludge function Use_cin_to_Vector.

ii. Test function Assign in place of the mixed type assignment operator.
iii. <Ctrl-z> to end Test2 doesn’t always work right.
iv. Test4 reveals that when attempting to open the file just renamed, Micro-

soft doesn’t flush a buffer. It doesn’t realize that the file is gone. It seems
then to create an empty file with the old name. It attempts to read from
the empty file, and throws and catches an exception. That leads to a
return, which ends the test. The adaptation will not attempt to fix this
situation. It requires greater understanding of Microsoft file handling.

v. Test5 stopped showing 15874 on my machine. Perhaps the last output
statement of the catch block didn’t execute.

c. VectorM.H and VectorM.CPP
i. In MaxNorm in VectorM.CPP change max to __max.

d. VecTestM No further changes.
e. Stokes No further changes.

9. Polynom module
a. Polynom.H and Polynom.CPP

i. Remove the double to complex conversion overload of the assignment
operator, and the double to complex constant polynomial constructor.
As in the Vector module, provide instances of function Assign to get
around the absence of the type-converting assignment operator. These are
invoked in Roots and Divide.

ii. Split templates GCD and LCM into separate functions with one parameter,
and with two, imitating the adaptation of Show and ForShow in the Vector
module.

iii. In the * operator and in LCM, change Zero(0) to Zero.
iv. In CauchyBound change max and min to __max and __min.
v. The compiler didn’t generate many instances of the templates for addition,

subtraction, and multiplication of polynomials by scalars. These were
added one by one to both Polynom.H and Polynom.CPP, and mentioned in
the coda. (I know I didn’t find all that should be there: I merely made
PolyTest.CPP link. Moreover, in my experience, some later corrections
usually render some earlier ones unnecessary. But I didn’t go through
these to check that out.)

b. PolyTest
i. Use Assign in MultiplicitiesTest to get around the absence of the type-

converting assignment operator.
ii. I didn’t wait long enough for Test9 in PolyTest.CPP to run out of memory,

so that exception hasn’t been tested.
c. Legendre No further changes.

Adapting MSP to Microsoft C++ @James T. Smith, 1999

Page 9

10. Matrix module
a. MatrixL.H and MatrixL.CPP

i. Replace the three overloaded = declarations in Matrix.H by one, that does
not permit any type conversion. Modify the code in MatrixL.CPP accord-
ingly. Microsoft doesn’t recognize the variants, and would incorrectly
substitute the default assignment operator.

ii. Supply a new nonmember overloaded function void
Assign(Matrix<Scalar>&, const Matrix<double>&), which acts like the
converting assignment operator function. Mention it in the MatrixL.CPP
coda.

iii. Reverse some logic in operator[], Vector<Scalar> and Col to put return
at end of each function.

iv. Add a nonexecuted return This at the end of KeyIn.
v. In SetUp change from the xalloc method of handling a new exception.

Use the fact that new returns NULL in case of exception. Eliminate the
outer try block.

vi. Add the Use_cin_to_Vector kludge mentioned earlier under VecTestL.
I don’t understand this problem.

b. MatTestL
i. Test the Assign function in place of the mixed type assignment operator.
ii. Replace the int i declarations within two for loops in MatTestL.CPP,

by a single one outside.
iii. Test1 and Test2 ran. Test3 didn’t work right. It threw the exception

when the disk got full, but apparently didn’t have enough memory left to
catch it. I didn’t wait long enough, perhaps, the second time I filled the
disk. It churned a long time while almost full. Perhaps Windows became
obsessed with reorganizing its swap file. (I won’t troubleshoot this, since
it worked with Borland.)

c. MatrixM.H and MatrixM.CPP
i. Add a bunch of invocations to the coda. And invoke UseMatrixM(int).

(Bug in original code.)
ii. In RowNorm change max to __max.

d. MatTestM No further changes.

11. GaussEl module
a. GaussEl.H and GaussEl.CPP

i. Invert some logic in Solve so that return comes last.
b. GausTest

i. Add a kludge like Use_cin_to_Vector mentioned earlier under VecTestL.
12. Eigenval module

a. Eigenval.H and Eigenval.CPP
i. Use Assign in place of a converting assignment statement in Eigenvalues.

b. EigenTst No further changes.

Adapting MSP to Microsoft C++ @James T. Smith, 1999

Page 10

13. Equate2 module
a. Equate2.H and Equate2.CPP No further changes.
b. Equ2Test

i. Add randomize(); to Equ2Test.CPP. In fact, certain initial values of this
fixpoint iteration cause divergence, and the non-random version found one!

c. Fig9_03 No further changes.
d. Fig9_05

i. Change y0 throughout to y00. Somehow some other piece of linked code
has a global called y0!

e. Fig9_09 No further changes.
f. Fig9_10 No further changes.
g. Fig9_12

i. Change y0 througout to y00. Somehow some other piece of linked code
has a global called y0!

ii. Remove an int declaration in a for loop. It’s still in the scope of the
previous one. Microsoft hasn’t implemented this change in the language
yet.

h. Fig9_16
i. The same puzzle occurs that happened with Borland. This won’t compile,

even though the same code did in Equ2Test. Microsoft objects to the same
statement that Borland did. There’s something I don’t understand, but I
won’t troubleshoot it now.

i. Fig9_17
i. Change y0 througout to y00. Somehow some other piece of linked code

has a global called y0!

